Laplace Transform and Transfer functions

Zero-input \& Zero-state Responses

- Let's think about where the terms come from: $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y(t)=\frac{d x}{d t}+x(t)$

$$
\left(s^{2}+5 s+6\right) Y(s)-\underbrace{(2 s+11)}_{\text {Initial }}=\underbrace{\frac{s+1}{s+4}}_{\text {Innut term }}
$$

Initial condition Input term
term

$$
Y(s)=\underbrace{\frac{2 s+11}{s^{2}+5 s+6}}_{\text {zero-input component }}+\underbrace{\frac{s+1}{(s+4)\left(s^{2}+5 s+6\right)}}_{\text {zero-state component }}
$$

$$
=\left[\frac{7}{s+2}-\frac{5}{s+3}\right]+\left[\frac{-1 / 2}{s+2}+\frac{2}{s+3}-\frac{3 / 2}{s+4}\right]
$$

$$
y(t)=\underbrace{\left(7 e^{-2 t}-5 e^{-3 t}\right) u(t)}_{\text {zero-input response }}+\underbrace{\left(-\frac{1}{2} e^{-2 t}+2 e^{-3 t}-\frac{3}{2} e^{-4 t}\right) u(t)}_{\text {zero-state response }}
$$

Example

In the circuit, the switch is in the closed position for a long time before $\mathrm{t}=0$, when it is opened instantaneously. Find the inductor current $\mathrm{y}(\mathrm{t})$ for $t \geq 0$.

$$
\begin{gathered}
L \frac{d y}{d t}+R y(t)+\frac{1}{C} \int_{-\infty}^{t} y(\tau) d \tau=10 u(t) \\
s Y(s)-y\left(0^{-}\right)+2 Y(s)+\frac{5 Y(s)}{s}+\frac{5 \int_{-\infty}^{0^{-}} y(\tau) d \tau}{s}=\frac{10}{s} \\
y\left(0^{-}\right)=\frac{10}{5}=2 A \quad \int_{-\infty}^{0^{-}} y(\tau) d \tau=q_{c}\left(0^{-}\right)=C V=2 \\
s Y(s)-y\left(0^{-}\right)+2 Y(s)+\frac{5 Y(s)}{s}+\frac{10}{s}=\frac{10}{s} \\
y(t)=\sqrt{5} e^{-t} \cos \left(2 t+26.6^{o}\right) u(t)
\end{gathered}
$$

$$
2 \Omega
$$

$$
M
$$

Laplace Tranform and Transfer Function

- Let's express input $\mathrm{x}(\mathrm{t})$ as a linear combination of exponentials $e^{s t}$.

$$
x(t)=\sum_{i=1}^{K} X\left(s_{i}\right) e^{s_{i} t}
$$

- H(s) can be regarded as the system's response to each of the exponential components, in such a way that the output $y(t)$ is:

$$
y(t)=\sum_{i=1}^{K} X\left(s_{i}\right) H\left(s_{i}\right) e^{s_{i} t}
$$

- Therefore, we get $\quad Y(s)=H(s) X(s)$

Example

Find the response $y(t)$ of an LTIC system described by the equation

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=\frac{d x(t)}{d t}+x(t)
$$

if the input $\mathrm{x}(\mathrm{t}) \xlongequal{d t^{2}} \mathrm{e}^{-5 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and all the initial condtions are zero; that is the system is in the zero state (relaxed).

Answer :

$$
y(t)=\left(-2 e^{-5 t}-e^{-2 t}+3 e^{-3 t}\right) u(t)
$$

Transfer Function Examples

Shifting
Property

Differentiation Property

Integration
Property

Internal Stability

- Internal Stability (Asymptotic)
- If and only if all the poles are in the LHP
- Unstable if, and only if, one or both of the following conditions exist:
- At least one pole is in the RHP
- There are repeated poles on the imaginary axis
- Marginally stable if, and only if, there are no poles in the RHP, and there are some unrepeated poles on the imaginary axis.

External Stability BIBO

The transfer function $\mathrm{H}(\mathrm{s})$ can only indicate the external stability of the system BIBO.

$$
H(s)=\frac{b_{0} s^{M}+b_{1} s^{M-1}+\ldots+b_{M}}{s^{N}+a_{1} s^{N-1}+\ldots+a_{N}}
$$

BIBO stable if $\mathrm{M} \leq \mathrm{N}$ and all poles are in the LHP

Example

Is the system below BIBO and asymptotically (internally) stable?

Block Diagrams

$$
\frac{Y(s)}{X(s)}=\frac{W(s)}{X(s)} \frac{Y(s)}{W(s)}=H_{1}(s) H_{2}(s)
$$

(a)

(b)

(c)

System Realization

$$
H(s)=\frac{b_{0} s^{M}+b_{1} s^{M-1}+\ldots+b_{M}}{s^{N}+a_{1} s^{N-1}+\ldots+a_{N}}
$$

- Realization is a synthesis problem, so there is no unique way of realizing a system.
- A common realization of $\mathrm{H}(\mathrm{s})$ is using
- Integrator
- Scalar multiplier
- Adders

Direct Form I Realization

$$
H(s)=\frac{b_{0} s^{3}+b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}
$$

Divide every term by s with the highest order s^{3}

$$
H(s)=\frac{b_{0}+\frac{b_{1}}{s}+\frac{b_{2}}{s^{2}}+\frac{b_{3}}{s^{3}}}{1+\frac{a_{1}}{s}+\frac{a_{2}}{s^{2}}+\frac{a_{3}}{s^{3}}}
$$

$$
H(s)=\left(b_{0}+\frac{b_{1}}{s}+\frac{b_{2}}{s^{2}}+\frac{b_{3}}{s^{3}}\right)
$$

$$
\left(\frac{1}{1+\frac{a_{1}}{s}+\frac{a_{2}}{s^{2}}+\frac{a_{3}}{s^{3}}}\right)
$$

$$
\underset{\mathrm{X}(\mathrm{~s})}{ } \underset{\mathrm{H}_{1}(\mathrm{~s})}{\mathrm{WW}(\mathrm{~s})} \xrightarrow[\mathrm{H}_{2}(\mathrm{~s})]{\mathrm{Y}(\mathrm{~s})}
$$

Direct Form I Realization

Direct Form II Realization

Example

Find the canonic direct form realization of the following transfer functions:
a) $\frac{5}{s+7}$
b) $\frac{s}{s+7}$

(a)
c) $\frac{s+5}{s+7}$
d) $\frac{4 s+28}{s^{2}+6 s+5}$

(c)

(b)

(d)

Cascade and Parallel Realizations

$$
H(s)=\frac{4 s+28}{s^{2}+6 s+5}
$$

Cascade Realization

$$
H(s)=\frac{4 s+28}{(s+1)(s+5)}=\left(\frac{4 s+28}{s+1}\right)\left(\frac{1}{s+5}\right)
$$

Parallel Realization

$$
H(s)=\frac{4 s+28}{(s+1)(s+5)}=\frac{6}{s+1}-\frac{2}{s+5}
$$

The complex poles in $\mathrm{H}(\mathrm{s})$ should be realized as a second-order system.

